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Abstract. The multiplicity of the identity representation occurring in the reduction of 
representations of semi-simple Lie groups to their finite or continuous subgroups is given for 
many group-subgroup pairs. 

1. Introduction 

Recognition of the generality of spontaneous symmetry breaking phenomena in 
quantum physics is the basis of the interest of physicists in a particular aspect of group 
theory: orbit structure of representation spaces and the related coarser structure of 
strata or families of orbits. An extensive bibliography about the subject is to be found in 
recent reviews (O’Raifeartaigh 1979, Michel 1980, Slansky 1981). 

The 6ne-to-one correspondence between strata and little groups reduces the study 
of strata to that of little groups. Let us recall that H is a little group for a representation 
R(G) of a compact group G such that G 3 H, if and only if the reduction 

R (G) 3 R (H) = @ Ri (H) (1) 
i 

of R(G) to the representation R(H) of the subgroup H contains the identity represen- 
tation in the direct sum (l), and H is the largest subgroup of G which leaves invariant the 
vector forming the basis of this identity representation. 

There are two natural questions to ask about little groups. 
(i) Given a representation R(G) of a semi-simple Lie group G, what are its little 

groups? 
(ii) Given H and an embedding H c G, which representations R (G) have H as a 

little group? 
The first question is best answered by means of lists of reductions (branching rules) 

of representations R (G) restricted to all maximal subgroups and then restricted further 
to maximal subgroups of subgroups, etc such as those of McKay and Patera (1981). An 
answer to the second question would require an investigation of infinitely many 
representations R(G) and therefore it has to be given in a different way. 

t Work supported in part by the Natural Science and Engineering Research Council of Canada and by the 
Ministere de I’Education du Quebec. 
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The purpose of this paper is to answer this second question for many pairs G =) H. In 
each case G is a semi-simple compact Lie group, while H is either a reductive Lie group 
(9 2) or a finite group (9 4). In 9 3 a different problem is considered: given a series of 
inclusions SU(n) 3 H, for n = n l ,  n2 ,  . . . of a fixed group H in the special unitary groups 
SU(n), and a representation {p}  of SU(n) specified by a particular Young tableau Y, 
what are the values of n for which H is a little group of {p}? It turns out that the answer 
is given in terms of recently found generating functions of a new type (Patera and Sharp 
1981). Section 5 contains some closing comments. 

2. Generating functions for subgroup scalars. Lie subgroups 

Each irreducible representation, A, of a semi-simple compact Lie group is labelled by 
means of the highest weight vector A = (al, a2, . . . , ak), each of whose components is a 
non-negative integer associated with the projection of A in the direction of one of the k 
simple roots of the corresponding Lie algebra of rank k. These roots are numbered in 
accordance with the convention of Dynkin (1957, p 116). 

It should be noted in particular that throughout this paper an irreducible represen- 
tation of SU(2), and the locally isomorphic groups Sp(2) and S0(3),  is denoted by an 
integer, a, equal to twice the corresponding angular momentum. In the case of the 
locally isomorphic groups Sp(4) and SO(5) the labels used, (al, a2) ,  are those appro- 
priate to the Lie algebra Cz. The corresponding label for the Lie algebra B2 would be 
(a2 ,  al). Similarly for the groups SU(4) and SO(6) the labels, (al, a2, a3) ,  are those of 
AS. The corresponding D3 label is (az ,  a t ,  a3) .  Finally the label for the semi-simple 
group SO(4) is that of the algebra A1/A1 written in the form ( a l ,  a2). This is all in 
accordance with recent convention (McKay and Patera 1981). 

The generating function required for subgroup scalars takes the form 

where m (A) is the number of scalars associated with the restriction of the representation 
A = (al, a2,  . . . , ak) to the appropriate subgroup. 

We illustrate this with the generating function for SO(3) scalars in SU(3) represen- 
tations. Further cases are then listed with only minimal comment. 

SU(3) 3 SO(3) (Bargmann and Moshinsky 1961) 
The generating function is 

@(PI, P2) = 1/(1 -&)(l -P i )  

= 1 + p : + p : + p ; ' + p : p : + p l : + .  . .+P:k1P;k2.. * . (3) 

Here PI and P2 are auxiliary variables whose exponents, al = p and a2 = 4, in the series 
(3) are the familiar SU(3) irreducible representation labels. Thus a term in the series of 
the form m(p,q)P?Pq means that the SU(3) representation ( p , 4 )  of dimension 
$ ( p  + l)(q + 1)( p + 4 + 2) contains the scalar representation of SO(3) exactly m ( p ,  4 )  
times. Since SO(3) is a maximal subgroup of SU(3), one immediately sees from (3) that 
SO(3) is a little group for every SU(3) representation with p and 4 both even. In each 
case the multiplicity of the SO(3) scalar is one. 

We now gather together a large class of similar results. 
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SU(n) 3 SU(n - m) x SU(m) x U(1), n 5 2 and 1 s m s [in] (Sharp 1972 for m = 2, 
Combe et a1 1979, Patera and Sharp 1980 for n = 6 and m = 3) 

Since this embedding is maximal SU(n - m) X SU(m) X U(l) is a little group for every 
SU(n) representation of the form A = (QI, az ,  . . . , ~ ~ - 1 ,  a,, 0, 0, . . . , 0, a,, 
~ ~ - 1 , .  . . , a2, al)  if 2m < n, and of the form A =  ( U I ,  UZ,  . . . , Um-1,2~,, am-1 , .  . . , 
U Z ,  ax) if 2m = n. In each case the number of scalars is just one. 

Let us point out the particular case n = 5 and m = 2 which underlies the unification 
of strong, weak and electromagnetic interactions. 

SU(5) 3 SU(3) X SU(2) x U(1) (Combe et a1 1979) 

S(P1, P2, P3, P4) = 1/(1 -PlP4)(1 -PZP3)- (4’) 
In this case the subgroup is the little group for every self-contragredient representation 
A = ( u ~ ,  az, U Z ,  ai) of SU(5). 

SU(n) 3 SU(n - m) x SU(m), n 5 2 and 1 d m d [in] (Sharp 1972 for m = 2, Combe et 
a1 1979, Patera and Sharp 1980 for n = 6 and m = 3) 
This is the same as the previous case except that the U(l)  content is now ignored. The 
generating function is different however: 

Scalars occur in the reduction of the representations A =  
(a l ,  U Z , .  . . , am-l, a,,O, 0,. . . ,0, an-,, ~ ~ - 1 , .  . . , a ~ ,  al)  and A =  
(al, az, . . . , am-l, a,, am-l, . . . , a2, al) if 2m = n. The number of scalars in the first 
case is just one, but in the second it is am + 1 by virtue of the generating function 
containing the factor 1/(1 -Pm)2. This embedding is not maximal, but SU(n -m) x 
SU(m) is the required little group for the appropriate representations of SU(n) if 
2m < n  and a, #an-,, or if 2m = n and a, # 0. 

if 2m <n, 

SU(n) 3SU(n - 1) x U(1), n 2 2 (Weyl 1931, p 391, Gel’fand and Zetlin 1950, Sharp 
and Lam 1969) 

(6) S(P1, Pz, * * . , Pn-l) = 1/(1 -PIPn-l). 
This is the special case of (4) corresponding to m = 1, where SU(1) consists of the 
identity element alone. Further specialisation to n = 2 gives: 

SU(2) 3 U(l) and SU(2) 3 SO(2) cf (8) and SO(3) 3 SO(2) cf (1 1) 

9(P, )  = 1/(1 -P:). (6’) 

9(P,,  Pz, . . . , Pn-l) = 1/(1 -P1)(1 -Pn-l). 

SU(n) =SU(n - l), n 2 2  (Weyl 1931, p 391, Gel’fand and Zetlin 1950) 

(7) 

This is the special case of ( 5 )  with m = 1. Further specialisation to n = 2 only yields the 
generating function for the dimension, a + 1, of the representation A = ( a )  of SU(2). 



1146 R C King, J Patera and R T Sharp 

SU(n) =SO(n), n 2 2  (Littlewood 1950, p 240, Bargmann and Moshinsky 1961 for 
n = 3, Sharp and Lam 1969 for n = 4, Combe et a1 1979, Patera and Sharp 1981 for 
n = 5 )  

- 1  

9(P1, P2,. . . , P"-d = ( k1 (1 -P; ) )  . 
j=1 

Clearly (3) is the particular case n = 3 of (8), and (6') is the case n = 2. In general SO(n) 
is a little group for every SU(n) representation with all labels even: A =  
(2al, 2a2,. . . , 2 ~ , - ~ ) .  This merely corresponds to the fact that the associated group 
character {A} is such that A = S with 6 in the series D, so that A is a partition all of whose 
parts are even (Littlewood 1950, p 240, King 1975). 

SU(2k) 3 Sp(2k), k 2 2 (Littlewood 1950, p 295, Sharp 1970 for k = 2, Combe er a1 
1979, Couture and Sharp 1980 for k = 3) 

Thus Sp(2k) is a little group for every representation of SU(2k) with a label of the form 
A = (0, az, 0, a4, . . . , a2k-2, 0). This corresponds to the fact that the associated group 
character {A} is such that A = /3 with /3 in the series B, conjugate to D, so that A is a 
partition with each part repeated an even number of times (Littlewood 1950, p 295, 
King 1975). 

SO(2k + 1) =I SO(2k + 1 - m )  x SO(m),  k 3 1, k f 2 and 1 s m s k (King 1975, Patera 
et a1 1980 for k = 3 and m = 2 )  

((l-Pm)E1 (l-P;))-l f o r l s m s k - 1  

( f i  (l-P;))-l 

j=1 

(10) 
for m = k. 1 j = l  

WP1, Pz, . . * , P k )  = 

Thus the tensor representation [ A ]  of SO(2k + 1) yields a scalar if and only if A is a 
partition into no more than m parts such that either A = S or A / 1 "  = S, for some 6 in the 
series D. 

SO(2k + 1) 13 S0(2k), k 2 1, k # 2 (Boerner 1963, p 251) 

This result follows from (10) with m = 1 since SO(1) is merely the identity element. 

SO(2k + 1) 3 SO(2k - l ) ,  k 2 1, k # 2 (Patera et a1 1980) 

This embedding is not maximal so that it is necessary to compare with (11) in 
determining whether or not SO(2k-1) is a little group for a representation of 
SO(2k + 1). 
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The results (lo), (11) and (12) are not appropriate to the case k = 2 simply because 
of the labelling adopted (McKay and Patera 1981) for representations of SO(5). It is 
only necessary to interchange P1 and Pz in these formulae to obtain: 

SO(5) ZJ SO(3) X SO(2) and Sp(4) 3 SU(2) x U(l) cf (18) 

9P1, P 2 )  = 1/(1 --m 4). 

SO(5) 3 SO(4) and Sp(4) 3 Sp(2) x Sp(2) cf (15) (Malkin and Mandel’tsveig 1966, 
Couture and Sharp 1980) 

(1 1’) 9P1, P2) = 1/(1 - P d .  

SO(5) 3 SO(3) and Sp(4) 3 SU(2) cf (19) 

9(P1, P2) = 1/(1-#)(1 -Pz)z.  

SO(2k + 1) 3 SU(k) x U(1), k 3 1, k # 2 (King 1975) 

Thus every tensor representation [A] yields a scalar. However this embedding is not 
maximal so that comparison must be made with SO(2k + 1) 3 SO(2k) and SO(2k) 3 
SU(k) X U(1) in determining the true little group. 

SO(2k + 1) 3 SU(k), k 3 1, k # 2 
-1 

WP1, P2,.  * . , Pk) = ((1 - P d 2  yi (1 . 
j= l  

(14) 

Dropping the dependence on U(1) in (13) gives rise to ak + 1 scalars in the case of the 
tensor representations [ A ]  for which a k  = 2Ak and the spinor representations [A; A ]  for 
which ak = 2Ak + 1. 

The k = 2 case involves interchanging PI and P2 as before. 

SO(5) 3 SU(2) X U(1) (Malkin and Mandel’tsveig 1966) 

9 P 1 ,  P2) = 1/(1 -m1 -P2). 

SO(5) 3 SU(2) (Malkin and Mandel’tsveig 1966) 

9(P1, P2) = 1/(1 -P1)2(1 -P2). 

(13’) 

(14’) 

Sp(2k) =Sp(2k -2m) X Sp(2m), k a 2 and 1 G m S [$k] (Sharp 1970 for m = 1, King 
1975) 

-1 

9 ( ~ 1 ,  ~ 2 r  * * ~ k )  = ( fi (1 -p2 j ) )  * (15) 
j= l  

This corresponds to the statement that the representation ( A )  yields a scalar if and only 
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if A is a partition into no more than m parts and A = /3 with /3 in the series B, as in the 
case (9). 

Sp(2k) 3Sp(2k -2) xU(l) ,  k 3 2 (Zhelobenko 1962, King 1976) 

g(P11P'21 P k ) = l / ( l - P 2 ) ( 1 - @ ) .  (16) 

Sp(2k) I> Sp(2k -2), k 3 2  (Miller 1966, Hegerfeldt 1966) 

g(P1,P2,. . . lPk)=1/(1-PZ)( l -P1)2.  (17) 

Sp(2k) 3 SU(k) x U(1), k 3 1 (Malkin and Mandel'tsveig 1966 for k = 2, Sharp and 
Lam 1969 for k = 2, King 1975, Gaskell et a1 1981 for k = 3) 

Thus the representation ( A )  yields a scalar if and only if A = 6 with S in the series D, as in 
(8 ) .  

Sp(2k) 3 SU(k), k b 1 (Malkin and Mandel'tsveig 1966 for k = 2) 

SO(k) 2 SO(2k - m) x SO(m), k 3 2 ,  k # 3 and 1 s m a k (King 1975) 
-- 1 

j = l  
f o r l s m a k - 2  

for m = k. 

As in the case of (10) this corresponds to a scalar appearing in each tensor represen- 
tation [A], [A]+ or [A]- with A a partition into no more than m parts and either A = S or 
A / l m  = S for some S in the series D. 

SO(2k) 3 SO(2k - l ) ,  k b 2, k # 3 (Boerner 1963, p 253) 

This result is the special case of (20) with m = 1. 

SO(2k) 3 SO(2k - 2), k 2 2, k # 3 (King 1976) 
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The results appropriate to k = 3 may be recovered by interchanging PI and Pz. 

SO(6) 3 SO(3) x SO(3) and SU(4) 3 SO(4) cf (8) 

F(P1, PZ, P3) = 1/(1 - P m  -P%l - P 3 *  

SO(6) 3 SO(5) and SU(4) 3 Sp(4) cf (9) 

9 v 1 ,  Pz, P3) = 1/(1 -P2). 

SO(4m + 2) 3 SU(2m + 1) x U(1), m a 2 

SO(4m +2) 3 SU(2m + l),  m a 2  

To recover the results for SO(6) it is merely necessary to set m = 1 in (23) and (24) 
and to interchange P1 and P2, yielding: 

SO(6) 3 SU(3) and SU(4) 3 SU(3) cf (5 )  

9(P1, P2, P3) = 1/(1 -P1)(1 -P3). 

SO(4m) 3 SU(2m), m b 2 

(247 

It is possible to apply an outer automorphism to SO(2k) which is equivalent to 
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interchanging Pk and P k - l  as far as subgroup scalar generating functions are concerned. 
This gives nothing new in (23) and (24), but it does in (25) and (26). The new results are 
obtained by replacing Pzm-l  by PZm. More significantly in the special case of SO(8) the 
group of outer automorphisms is of order 6, and is equivalent to arbitrary permutations 
of P I ,  P3 and P4. Interchanging P I  and P3 in (25) and (26) in the case m = 2 then gives: 

SO(8) = SU(4) x U(1) and SO(8) 3 SO(6) x SO(2) cf (20) 

9P1, Pz, Ps, P4) = 1/(1- P&l -P2). 

SO(8) 3 SU(4) and SO(8) 3 SO(6) cf (22) 

9 P 1 ,  Pz, P3, P4) = 1/(1 -Pd2(1 - P J .  

(25') 

In addition to these results for the classical groups the following apply to the 
exceptional groups: 

SO(7) I> G(2) (Wybourne 1972, Gaskell et al 1978) 

9 P 1 ,  Pz, P3) = 1/(1 -P3).  

G(2) 3 SU(3) (Fronsdall962, Mandel'tsveig 1965, Sharp and Lam 1969, Gaskell et af 
1978) 

%PI, PZ) = 1/(1 -Pz) .  (28) 

G(2) 3SU(2)  XSU(2) (Stone 1970, Gaskell and Sharp 1981) 

9 ( P l ,  PZ) = 1/(1 - P f ) ( l  -P;). 

F(4) 3 SO(9) (Wybourne and Bowick 1977) 

P(P1, P2, P3, P4) = 1/(1 -P4). 

3. Fixed plethysm generating functions 

Examination of the tables (McKay and Patera 1981) of branching rules for represen- 
tations of simple Lie groups restricted to maximal semi-simple Lie groups shows that 
the generating functions of the previous section cover 106 embeddings involving the 
classical groups and 4 embeddings involving the exceptional groups. 

There are other maximal embeddings of the form SU(nm) 2 SU(n) x SU(m) which 
are covered by the work of Combe et a1 (1979). However in these cases no simple 
generating functions for the subgroup scalars exist. The same is true of the maximal 
embeddings of the form SO(nm) 3 SO(n) x SO(m), SO(4nm) ~ S p ( 2 n )  x Sp(2m) and 
Sp(2nm) 2 Sp(2n) x SO(m).  This is a consequence of the complexity of the branching 
rules given elsewhere (King 1975) for these embeddings. 

The remaining embeddings covered by the tables are all associated with plethysms 
and include 13 involving the embedding of SU(2) or SO(3) in a simple Lie group. First 
we consider the inclusion SU(2) c SU(n), where the n-dimensional defining represen- 
tation of SU(n) contains the irreducible representation A = ( n  - 1) of SU(2). This 
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inclusion of SU(2) in SU(n) is unique and SU(2) is then called the principal three- 
dimensional subgroup. 

For n 24 this inclusion is not maximal however, since for n even we have 
SU(n) 2 Sp(n) =I SU(2) and for n odd SU(n) 3 SO(n) 2 S0(3), whilst for the particular 
case n = 7 SU(7) 13 SO(7) =I G(2) =) SO(3). 

The cases n = 4 and 5 coincide. The generating function for subgroup scalars takes 
the form: 

Sp(4) 3 SU(2) and SO(5) 3 SO(3) (Stone 1970, Gaskell et a1 1978) 

WP1, P2) = (1 +P(;P:)/(l-P:)(l -Pl)(l -P:P:). (31) 

For n = 7 we have: 

G(2) 2 SO(3) (Gaskell and Sharp 1981) 

9(p1, p2)  = [(I -~:)(i +;)(I --~:~3]-~{[(1 +P:P:)(I +P~~)+P~P:(~ +P~(I + P ~ I  
x [( 1 - P;)( 1 - P:O)]-' + (1 + P:)[P1 (P: + P;) + P:(P; + P: + P; + Pi1) 
+ P:(P2 +P; +P: + P;) + P:(P: + P; + Pr: +Pi0) +P:(P; +P: + P; +Pi) 
+ P?(PZ +Pi +P', +P:") +P:(P: +Pi + P; + P:) +P?(P2 +Pi +P: + P;) 
+ P:(P; +PX +P: +Pi0) + PiO(l +P; +Pi +P:) 
+P:'(P:+P;)][(l -Pi")(l -P1 )I 
+ (1 +P;)[P: +pi5  + (P:+P:' +P:' + P : ~ ) P ~  + (P: +P: +P: + P : ) P ~  

+ (P:+P:2)P:][(1 -PiO)(l -P:)3-1}. (32) 

This is the inclusion where the 7-dimensional irreducible representation (0,l) of G(2) 
contains the 7-dimensional irreducible representation (6) of SO(3). 

This rapid increase in complexity as n increases makes further progress in dealing 
with these maximal subgroups unlikely. However in order to complete what is known 
about generating functions for continuous subgroup scalars we now turn to a recently 
discovered type of generating function (Patera and Sharp 1981). Particular cases give 
us generating functions for subgroup scalars. However, the interpretation and use of 
these functions is quite different from the previous ones. In all cases of § 2 (and also in all 
cases in the following §4) the group and subgroup are fixed and each term of the 
generating function power series refers to a different irreducible representation of the 
containing group. From now on in this section the larger group is always of the type 
SU(n) but is not fixed; its representation is specified by a Young tableau and is fixed. 
Each term of the corresponding generating function power series refers to a different 
group SU(n) but to the same Young tableau. 

10 -1 

This new generating function takes the form 

%{w)(Li, Lz, . . . , Lk) = m(A)L?L2"2 . . . L> (33) 

where now m ( A )  is the number of scalars associated with the restriction of the 
representation of SU(n) specified by the Young tableau { p )  to a semi-simple Lie 
subgroup H of rank k, possessing an n-dimensional representation labelled in the usual 
way by A = (al, a2, . . . , ak). 

A 
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If the subgroup H is SU(2) or SO(3) we have 

%d(L) = c m(a)L" 
a 

and typically (Patera and Sharp 1981) 

%{l}(L) = 1 

ce,',(L) = 1/(1 - L 2 )  
%{3)(L.) = 1/(1 -L4) 

(33') 

and generally 

Also 

Each function is a power series in L where the exponent, a, indicates that the relevant 
group is SU(n) with n = a  + 1. 

To be specific consider (42) for n 3 2 with the SU(n) representation denoted either 
in the Young tableau, partition notation by {22} or in the Dynkin convention by 
(0 ,2,0, .  . . ,O) .  One has 

% { 2 2 } ( ~ ) = ~ + ~ 2 + ~ 3 + 2 ~ 4 + .  . . . (42') 

The first term is trivial because the representation (2') of SU(2) is of dimension 1 and is 
the identity representation. The second term corresponds to the fact that the represen- 
tation {2*} = (0,2) of SU(3) gives rise to a single scalar of SO(3) on restriction in 
accordance with (8). The third and fourth terms correspond to the representations 
{22} = (0,2,0) of SU(4) and {22} = (0,2,0,0) of SU(5) containing one and two scalars of 
SU(2) respectively. 

The generating functions 

%{2,1} (L)  = %{2.12} (L )  = %{3,1} (L )  = 0 (44) 

indicate merely that the corresponding SU(n) representations do not contain SU(2) 
scalars for any value of n.  

Some remarkable symmetries of fixed plethysm generating functions have been 
pointed out (Patera and Sharp 1981); namely, the multiplicities of SU(2) scalars 
coincide in certain representations of infinite series of different SU(n) groups. More 
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precisely, it happens for the representations 

{x ,  lY-'} of SU(n + y )  and { y ,  lX-'} of SU(n + x )  

{XY) of SU(y + z )  (46) 

(45) 

for any n, and for the six representations obtained from 

by permuting x ,  y and z in all possible ways. Here the integers x ,  y and z are 
non-negative and such that the symbols are meaningful. Notice that (41) is a particular 
case of both (45) and (46). The generating functions for the general cases (45) and (46) 
are not known. 

In the following case the subgroup of SU(n) is SU(3). It is embedded in SU(n) in 
such a way that the SU(3) representation (p, 4 )  is contained irreducibly in the defining 
representation of SU(n). Therefore one must have the equality of dimensions: 

(47) n = t ( p  +1)(q+ i ) ( p  + q + 2 ) .  

Then, for example 

that is, in order to find SU(3) scalars in the SU(n) representation ( 2 , 0 , .  . . , 0), it is 
necessary that n is given by (47) and that p = q. However even in these cases there is 
only one SU(3) scalar and it is easy to see that the corresponding little group is actually 
SO(n), since if p = q the representation matrices of (p, p )  are orthogonal and the 
representation (2 ,0, .  . . , 0) gives rise to a scalar of SO(n) by virtue of (8). 

In addition one finds (Patera and Sharp 1981, equation (5.6)) 

%{l?Wl, LZ) = 1 

indicating that for no value of n does the representation (0, 1, . . . , 0) of SU(n) contain 
an SU(3) scalar. 

Finally, the generating functions for scalars of the groups SU(2) embedded into 
SU(n) as a direct sum ul @a2 of two arbitrary irreducible representations of dimensions 
al  + 1 and az+ 1, such that u1 + a z + 2  = n, are given by: 

l +  1 + 1 
%}(L19 (1 -L1)(1 -L;) (1 -L1L2) (1 -L?)(l -L2) 

(49) 

The variables L1 and Lz carry the representation labels al and a2 respectively as 
exponents. 
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4. Generating functions for subgroup scalars. Finite subgroups 

In this section we collect the generating functions for little groups of SU(2) represen- 
tations (Patera et a1 1978, Desmier and Sharp 1979) and give a new one for the 
subgroup of SU(3) of order 168: 

SU(2) =) (d)T 

= 1 + P 6 + P 8 + 2 P 1 2 + .  , , , 
1 + PI2 

(1 -P6)(1 -P8) 
9(P) = (54) 

Here the presence of the term 2PI2 means that the irreducible SU(2) representation of 
dimension 13 contains two scalars of the double tetrahedral group (d)T in the direct 
sum (1). 

SU(2) 3 (d'O 

1 + P I 8  

(1 - PS)(l - P") 
9(P) = 

SU(2) =, (d'I 

1 + P30 
(1 - PI2)( 1 - P20) 

9(P) = 

1 -I- P2n+2 
(1 -p4)(1 - pZn 1 .  

P(P) = 

For n = 1, the group consists of two elements *l. 

1 i D Z n  
A i l  

9(P) = 
(1-P2)(l-P2") 

The subsequent groups occur only in O(3) 

O(3) 3T[O 

1 
9(P) = 

(1 - P6)( 1 - P8) 

O(3) 3 Dn[Dzn, n = 1,2, . . . 
1 + pZnt2 

9(P) = if n is even 
(1 - p4)(1 - p 4 n )  

if n is odd 

155) 

1571 

158) 

(59) 
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O(3) 3 C,[D,, n = 1,2,  . . . 
1 

9 ( P )  = 
(1 -P2)(1 --P2,)* 

0(3)3Cn[C2,, n = 1 ,2 , .  . . 
1 + 2P2”+2 + P4” 

9 ( P )  = if n is even (63) ( 1  - p4)(1 - p4n) 

if n is odd. 
1 + P2“ 9qP) = 

(1 -p4) (1  - p2“) 

To conclude the section let us consider a finite subgroup X(168) of SU(3) which is 
not a subgroup of O(3). Its order is 168. Details concerning X(168) and its inclusion in 
SU(3) were studied by Fairbairn et a1 (1964). 

Standard methods (for instance, Patera etal 1978) applied in a straightforward way 
provide (Desmier et al 1981) the generating function for Z(168) scalars in reduction of 
the irreducible representations of SU(3): 

1 
9w1, PZ) = (1 -pt4)(1 l (  - P : ~ )  (1  -p:)( i  -p:)(i  -P; )  

x[1+P;+P1(P;+P:3 +P:”+P:7+P:8)  

+P:P:“P:(P; +Pi’ +Pi’ + P i 3  +Pi4 +2P:s + P i 6 )  

+ P;‘ (P:3 + P i S )  + P: (P:O +Pi’ + P:’ + P i S  + P i 7 )  

+ pis  (P; + P:’ + P ~ ‘ P P :  +pi7 (pZ +P: 
+P:’(P; +2P:+P~+P;+P7,)+P:OP;+P:’(l+P*+P; +P:+P;)]  

+Pp:’ +P:(P: +P:’ )+P:4(P:4  + P i 6 )  

+PF’ (I? + P:) 
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+P;(P2+P:+P:+P:+P:8+P:9+P:o+P:1) 

+P:(P; +P;  +P;  +Pi6 +P:' + P i 8 )  

+ P:O (Pi  + P:: + P: + P; +Pi' + Pi9 + Pi0 

+P: ' (Pz+P: +P; +P;  +Pi' + P i Y )  

+Pi2(P: +P: +2p: +P;  +Pi' +P:O) 

+ Pi3 (Pi  + P: + P:O +Pi' + P;9)  

+ Pi4 (P: + P:: + P: + P:) + PiS  (P; + PX)] 

+ [ M P ;  +Pi' 1 

+P:(P;+P;+P;+P:o+P:' +P:2+P:3+P:4j 

+P:(P: +P; +P; +P; + P y )  

+ P;1 (Pi  + P2" + P; + Pi0 + Pi2 +Pi4 +Pi ' )  

+P:(P:: +P: +P; +Pi  +Pi0 +2Pi2 +P;4)  

+P:(P: +P; + P p  +P:'+P:') 

+P:Pi4 +P;(P; +P:')+P:P:' +P:"P: +P;3)+P:2(P: + P i 3 )  

+Pi": + P:"P: + P:) +Pi": 

+P:"P2+P::+P;+P:+P;)fP:'(P: +2P:+P;+P;+P:0+P:2)  

+ P:S(P, + P: +Pi  + P i  + P i  +P;  + P;)  

+P:9(P:+P;+P:o+P:1)  

+PIo(P: +Pi  +P;: +P: +P;  + P ;  +Pi0 + P i 2 )  

1 
(1  - P;1)(1- P;)(1-  P:, 

+ P:'(P: + P ; ) ]  = 1 + P; + P; +. . . . (651 

Here again an expansion of 9 ( P 1 ,  P2) into power series yields the answer to the 
question about SU(3) representations containing the identity representation of C( 168). 
Namely, a term mPfP," of the series implies that there are exactly m identity represen- 
tations of X(168) in the reduction of the representation ( p ,  q )  of SU(3). 

The complexity of the expression ( 6 5 )  demonstrates how rich is the structure of 
integrity bases and their syzygies in the case of finite little groups of SU(3). A systematic 
study of these questions is being undertaken elsewhere (Desmier et a1 1981). One 
cannot but wonder what implications, if any, could there be, for instance, for particle 
physics. 

) 

5. Concluding remarks 

Many of the new generating functions of 5 2, although fairly simple, cannot be obtained 
by a straightforward hand computation. The amount of algebraic manipulation 
involved (Patera and Sharp 1979) is prohibitive even if in some cases the newest 
techniques (Stanley 1980, King 1981, Baclawski 1981) could be used. The functions 
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were therefore obtained either by going through a table of branching rules and 
compiling the integrity basis from there or from a direct examination of an algorithm 
defining the branching rule. 

When a reference is given alongside a generating function it is to a paper which gives 
the generating function explicitly or, in some cases, gives either an integrity basis or a 
complete algorithm for the branching rule appropriate to all irreducible represen- 
tations. If an integrity basis is completely determined, including polynomial identities 
(syzygies) relating its elements, the corresponding generating function can be written 
down relatively easily (Patera and Sharp 1980), and vice versa. 

Most of the generating functions of 0 2 refer to a maximal subgroup H of G. In 
physics, however, one is often interested in non-maximal little groups (O’Raifeartaigh 
1979, Michel 1980). The corresponding generating function for subgroup scalars can 
be found by combining two or more generating functions for maximal subgroups 
(Patera and Sharp 1980). Let us exemplify the procedure by means of an example. 

G(2) 3 SU(3) 3 SO(3) 
The generating function (3) describes the first step. It has to be combined with the full 
generating function for the branching rules for G(2) 3 SU(3): 

where the variables P1 and P2 carry the G(2) representation labels, and P and Q those 
of SU(3). From (3) it is clear that we need only that part of (66) which contains even 
degrees in P and Q. Separating that from (66) and setting P = Q = 1, we arrive at the 
desired generating function: 

Another example, SU(3) 3 SO(3) 3 0, involving the octahedral group 0, is given by 
equation (4.6) of Patera and Sharp (1980). There L should be replaced by unity and A3 
by zero. Then the coefficient of ATAq is the number of 0 scalars in the SU(3) 
representation ( p ,  4). 

In all such cases where the subgroup H of G is not maximal it should be stressed that 
the subgroup scalar generating function does not automatically indicate that the 
subgroup in which the scalars occur is a little group. For example, the defining 
representation of S0(2k+1)  gives rise, as can be seen from (13), to a scalar of 
SU(k) x U(1). However the little group of this representation which leaves this scalar 
invariant is SO(2k). Each such case of a non-maximal embedding must be treated with 
care in the determination of little groups. 

Finally let us point out some further cases which could have been included in this 
paper. 

Firstly the tables of branching rules of McKay and Patera (1981) and the results of 
Wybourne and Bowick (1977) and Wybourne (1978, 1979) could have been used to 
write down at least the first few terms in the expansions of the subgroup scalar 
generating functions for the maximal subgroups of the exceptional Lie groups. 

Secondly the symmetries (45) and (46) could have been used along with the results 
of Sylvester (1881) and Sylvester and Franklin (1879) to extend the range of known 
generating functions 9tM)(L) to cover all partitions p of 12 or less. 
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Thirdly the generating functions for finite subgroup scalars in representations of the 
Lorentz group O(3 , l )  could be obtained from the work of Patera and Saint-Aubin 
(1980). 
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